OpenGL quaternions
disclaimer
Using quaternions for rotations solve many problems. A good tutorial is found
here.
I just implemented it in Delphi code.
unit Quaternions;
interface
type
QuatPtr=^Quat;
Quat=RECORD
w,x,y,z:single;
end;
VectPtr=^Vect;
Vect=record
x,y,z:single;
end;
PGLMatrixf=^GLMatrixf;
//GLMatrixf=array[1..16]of single; // column major matrix 4x4, down first
GlMatrixf=array[1..4,1..4]of single; // please check
// [1] [5] [ 9] [13]
// [2] [6] [10] [14]
// [3] [7] [11] [15]
// [4] [8] [12] [16]
// basic quaternion operations
procedure Q_Add(a,b:QuatPtr); // a:=a+b;
function Q_AddN(a,b:QuatPtr):QuatPtr; // result:=a+b;
procedure Q_Mult(var a,b:QuatPtr); // a:=a*b;
function Q_MultN(a,b:QuatPtr):QuatPtr; // result:=a*b;
procedure Q_Conj(a:QuatPtr); // a:=conj(a);
function Q_ConjN(a:QuatPtr):QuatPtr; // result:=conj(a);
function Q_norm(a:QuatPtr):single; // result:=norm(a);
procedure Q_Inv(a:QuatPtr); // a:=inv(a);
function Q_InvN(a:QuatPtr):QuatPtr; // result:=inv(a);
procedure Q_normed(a:QuatPtr); // normalize(a);
// rotate a vector
function rotateN(a:QuatPtr;v:VectPtr):VectPtr; // result:= v rotate by a
procedure rotate(a:QuatPtr;v:VectPtr); // a:= v rotate by a
function Q2M4(a:QuatPtr):PGLMatrixf; // quaternion to matrix 4x4
function M42Q(m:PGLMatrixf):QuatPtr; // matrix 4x4 to quaternion
implementation
procedure Q_Add(a,b:QuatPtr); // a:=a+b;
begin
a.w:=a.w+b.w;
a.x:=a.x+b.x; a.y:=a.y+b.y; a.z:=a.z+b.z;
end;
function Q_AddN(a,b:QuatPtr):QuatPtr; // result:=a+b;
begin
result:=new(QuatPtr);
result.w:=a.w+b.w;
result.x:=a.x+b.x; result.y:=a.y+b.y; result.z:=a.z+b.z;
end;
procedure Q_Mult(VAR a,b:QuatPtr); // a:=a*b;
var h:Quatptr;
begin
h:=Q_MultN(a,b);
dispose(a);
a:=h;
end;
function Q_MultN(a,b:QuatPtr):QuatPtr; // result:=a*b;
begin
result:=new(QuatPtr);
result.w:=a.w*b.w-a.x*b.x-a.y*b.y-a.z*b.z;
result.x:=a.y*b.z-a.z*b.y+a.w*b.x+b.w*a.x;
result.y:=a.z*b.x-a.x*b.z+a.w*b.y+b.w*a.y;
result.z:=a.x*b.y-a.y*b.x+a.w*b.z+b.w*a.z;
end;
procedure Q_Conj(a:QuatPtr); // a:=conj(a);
begin
a.x:=-a.x; a.y:=-a.y; a.z:=-a.z;
end;
function Q_ConjN(a:QuatPtr):QuatPtr; // result:=conj(a);
begin
result:=new(QuatPtr);
result.w:=a.w; result.x:=-a.x; result.y:=-a.y; result.z:=-a.z;
end;
function Q_norm(a:QuatPtr):single; // result:=norm(a);
begin
result:=sqr(a.w)+sqr(a.x)+sqr(a.y)+sqr(a.z);
end;
procedure Q_Inv(a:QuatPtr); // a:=inv(a);
begin
Q_Conj(a);
Q_normed(a);
end;
function Q_InvN(a:QuatPtr):QuatPtr; // result:=inv(a);
begin
result:=Q_ConjN(a);
Q_normed(result);
end;
procedure Q_normed(a:QuatPtr); // normalize(a);
var u:single;
begin
u:=Q_norm(a);
a.w:=a.w/u; a.x:=a.x/u; a.y:=a.y/u; a.z:=a.z/u;
end;
function rotateN(a:QuatPtr;v:VectPtr):VectPtr; // result:= v rotate by a
var u,h,t:QuatPtr;
begin
u:=new(QuatPtr);
u.w:=0; u.x:=v.x; u.y:=v.y; u.z:=v.z;
h:=Q_MultN(a,u);
dispose(u);
t:=Q_invN(a);
u:=Q_multN(h,t);
result:=new(VectPtr);
result.x:=u.x; result.y:=u.y; result.z:=u.z;
dispose(t);
dispose(u);
end;
procedure rotate(a:QuatPtr;v:VectPtr); // a:= v rotate by a
var u,h,t:QuatPtr;
begin
u:=new(QuatPtr);
u.w:=0; u.x:=v.x; u.y:=v.y; u.z:=v.z;
h:=Q_MultN(a,u);
dispose(u);
t:=Q_invN(a);
u:=Q_multN(h,t);
v.x:=u.x; v.y:=u.y; v.z:=u.z;
dispose(t);
dispose(u);
end;
function Q2M4(a:QuatPtr):PGLMatrixf; // quaternion to matrix 4x4
var x2,y2,z2,xy,wx,wy,wz,xz,yz:single;
begin
result:=new(PGLMatrixf);
x2:=2*sqr(a.x); y2:=2*sqr(a.y); z2:=2*sqr(a.z);
xy:=2*a.x*a.y; wz:=2*a.w*a.z; yz:=2*a.y*a.z;
xz:=2*a.x*a.z; wy:=2*a.w*a.y; wx:=2*a.w*a.x;
result[1,1]:=1-y2-z2; result[2,1]:=xy+wz; result[3,1]:=xz-wz; result[4,1]:=0;
result[1,2]:=xy-wz; result[2,2]:=1-x2-z2; result[3,2]:=yz-wx; result[4,2]:=0;
result[1,3]:=xz-wy; result[2,3]:=yz-wx; result[3,3]:=1-x2-y2; result[4,3]:=0;
result[1,4]:=0; result[2,4]:=0; result[3,4]:=0; result[4,4]:=1;
end;
function M42Q(m:PGLMatrixf):QuatPtr; // matrix 4x4 to quaternion
var tr,s :single;
i,j,k:integer;
q:array[1..4]of single;
next:array[1..3] of integer;
begin
next[1]:=2; next[2]:=3; next[3]:=1;
result:=new(QuatPtr);
tr:=m[1,1]+m[2,2]+m[3,3];
if tr>0 then begin
s:=sqrt(tr+1);
result.w:=s/2;
s:=0.5/s;
result.x:=(m[2,3]-m[3,2])*s;
result.y:=(m[3,1]-m[1,3])*s;
result.z:=(m[1,2]-m[2,1])*s;
end
else begin // trace<0
i:=1;
if (m[2,2]>m[1,1]) then i:=2;
if (m[3,3]>m[i,i]) then i:=3;
j:=next[i];
k:=next[j];
s:=sqrt((m[i,i]-m[j,j]+m[k,k]))+1;
q[i]:=s*0.5;
if (s<>0)then s:=0.5/s;
q[4]:=(m[j,k]-m[k,j])*s;
q[j]:=(m[i,j]-m[j,i])*s;
q[k]:=(m[i,k]-m[k,i])*s;
result.x:=q[1];
result.y:=q[2];
result.z:=q[3];
result.w:=q[4];
end;
end;
end.
OpenGL
home
last updated: 23.april.00
Copyright (99,2000) Ing.Büro R.Tschaggelar